If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+19m+15=0
a = 6; b = 19; c = +15;
Δ = b2-4ac
Δ = 192-4·6·15
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*6}=\frac{-20}{12} =-1+2/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*6}=\frac{-18}{12} =-1+1/2 $
| 6x+2-4x=3(2x+1)-2(2x+1/2) | | 5a-10=4(a+1)+18a+5 | | 4v^2-13v-12=0 | | 5-(2x-1)=9-(2+3x | | (2x-6)(x+3)=260 | | 6x-2-5x=9 | | 4v^2+13v+12=0 | | 16x-66=88-7x | | 2/5=7/8c | | 15m^2+18m-24=0 | | 3X-0.7x=12 | | 18/3l-2=1 | | 2y2=5y-2 | | 5(t-3)+3t=4(2t+3)-8 | | 2.4x-10.38=5.7 | | x+x-46+x-35+1/2x=360 | | 1.7k+3.7k-8.4=-3 | | -86+3x=-7+164 | | –6r+2(r+2)–5=-20 | | y^-4y=0.8 | | -2x^2+8x=-24 | | -7-8=6+x | | K-A(Z+4)=x | | 4.9t^2-6.647t-2.5=0 | | K-1-2k=-5 | | -16x^2-19x+332=0 | | 10=6+2k/4 | | -6(x+2)-15=18+3 | | -21=3/7n | | 14/5+1/9t=4 | | -17+x=-10 | | 25=x/10 |